skip to main content


Search for: All records

Creators/Authors contains: "Chen, Baohong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adhesives typically fall into two categories: those that have high but irreversible adhesion strength due to the formation of covalent bonds at the interface and are slow to deploy, and others that are fast to deploy and the adhesion is reversible but weak in strength due to formation of noncovalent bonds. Synergizing the advantages from both categories remains challenging but pivotal for the development of the next generation of wound dressing adhesives. Here, we report a fast and reversible adhesive consisting of dynamic boronic ester covalent bonds, formed between poly(vinyl alcohol) (PVA) and boric acid (BA) for potential use as a wound dressing adhesive. Mechanical testing shows that the adhesive film has strength in shear of 61 N/cm 2 and transcutaneous adhesive strength of 511 N/cm 2 , generated within 2 min of application. Yet the film can be effortlessly debonded when exposed to excess water. The mechanical properties of PVA/BA adhesives are tunable by varying the cross-linking density. Within seconds of activation by water, the surface boronic ester bonds in the PVA/BA film undergo fast debonding and instant softening, leading to conformal contact with the adherends and reformation of the boronic ester bonds at the interface. Meanwhile, the bulk film remains dehydrated to offer efficient load transmission, which is important to achieve strong adhesion without delamination at the interface. Whether the substrate surface is smooth (e.g., glass) or rough (e.g., hairy mouse skin), PVA/BA adhesives demonstrate superior adhesion compared to the most widely used topical skin adhesive in clinical medicine, Dermabond. 
    more » « less
  2. A strain-stiffening seal is soft to accommodate installation but stiff to block fluid flow. Leak by elastic deformation or rupture? We construct diagrams in which the two modes of leak are demarcated.

     
    more » « less
  3. A supercapacitor requires two electronic conductors with large surface areas, separated by an ionic conductor. Here we demonstrate a method to print a highly stretchable supercapacitor. We formulate an ink by mixing graphene flakes and carbon nanotubes with an organic solvent, and use the ink to print two interdigitated electronic conductors on the surface of a dielectric elastomer. We then submerge the printed electronic conductors in an aqueous solution of monomer, photoinitiator, crosslinker, and salt. The organic solvent and water form a binary solvent in which the ions are mobile. Upon UV irradiation, a polymer network forms. In each printed electrode, the graphene flakes and carbon nanotubes form a percolating network, which interpenetrates the polymer network. The electronic and ionic conductors form large interfacial areas. When the supercapacitor is stretched, the graphene flakes and carbon nanotubes slide relative to one another, and the polymer network deforms by entropic elasticity. The polymer network traps individual graphene flakes and carbon nanotubes, so that repeated stretch neither breaks the percolating network nor shorts the two electrodes. The supercapacitor maintains 88% the initial capacitance after 1600 cycles of stretch to five times its initial dimension. The interpenetration of a covalent network of elastic polymer chains and a percolating network of conductive particles is generally applicable for making stretchable ionotronic devices. 
    more » « less
  4. Liquid propylene-glycol (PG) has long been used as an anti-icing substance, for example, by spraying on an airplane parked in an airport. In applications, large quantities of PG flow away, which is costly and raises environmental concerns. Here we report propylene-glycol materials, including PG-gels and PG-gel/cotton composites. A PG-gel consists of PG molecules as a solvent and a polymer network. PG evaporates slowly, and the polymer network retains the PG molecules so long as the gel is not in contact with running water. Water and PG form a eutectic system with an eutectic temperature of −60 ◦C. When ice falls on the surface of the gel, the ice and the PG molecules compete for water molecules, and thermodynamics dictates that the ice should lose water molecules to the PG molecules, so that ice melts and water molecules dissolve in the gel. A liquid-like layer exists on the ice/gel interface, the adhesion energy between the gel and ice is low, and ice readily slides on the gel. We peel a PG-gel from ice, and measure a low adhesion energy of ∼3 Jm−2 at temperatures about −35 ◦C. We further demonstrate PG-gel/cotton composites as tough, anti-icing blankets. The blankets are reusable if one removes water by dehydration, and replenish PG by submerging the blanket in liquid PG. 
    more » « less
  5. Abstract

    Electroadhesion provides a simple route to rapidly and reversibly control adhesion using applied electric potentials, offering promise for a variety of applications including haptics and robotics. Current electroadhesives, however, suffer from key limitations associated with the use of high operating voltages (>kV) and corresponding failure due to dielectric breakdown. Here, a new type of electroadhesion based on heterojunctions between iono‐elastomer of opposite polarity is demonstrated, which can be operated at potentials as low as ≈1 V. The large electric field developed across the molecular‐scale ionic double layer (IDL) when the junction is placed under reverse bias allows for strong adhesion at low voltages. In contrast, under forward bias, the electric field across the IDL is destroyed, substantially lowering the adhesion in a reversible fashion. These ionoelastomer electroadhesives are highly efficient with respect to the force capacity per electrostatic capacitive energy and are robust to defects or damage that typically lead to catastrophic failure of conventional dielectric electroadhesives. The findings provide new fundamental insight into low‐voltage electroadhesion and broaden its possible applications.

     
    more » « less
  6. Abstract

    Adhering hydrogels to various materials is fundamental to a large array of established and emerging applications. The last few years have seen transformative advances in achieving strong hydrogel adhesion, which is a supramolecular phenomenon. Two adherends connect through covalent bonds, noncovalent complexes, polymer chains, polymer networks, or nanoparticles. Separating the adherends dissipates energy through cascading events across length scales, including bond cleavage, chain retraction, and bulk hysteresis. A unifying principle has emerged: strong hydrogel adhesion requires the synergy of chemistry of bonds, topology of connection, and mechanics of dissipation. This synergy characterizes hydrogel adhesion to various materials (another hydrogel, tissue, elastomer, plastic, metal, glass, and ceramic) in various operations (cast, coat, print, attach, pierce, and glue). Strong adhesion can be made permanent, reversible, degradable, or on‐demand detachable. The development of hydrogel adhesion and its applications adheres disciplines, discovers interlinks, and forges cohesion. Discussed throughout the review are immediate opportunities for fundamental studies and practical applications.

     
    more » « less